

Kondensation von Methylcarben-Komplexen mit Säureamiden: β -Alkoxyalkenyl- und β -Aminoalkenylcarben-Komplexe von Chrom und Wolfram — Konkurrenz von Kondensation und Insertion

Rudolf Aumann* und Peter Hinterding

Organisch-Chemisches Institut der Universität Münster, Orléans-Ring 23, D-4400 Münster

Eingegangen am 4. September 1989

Key Words: Aminoalkenylation of methylcarbene complexes / Carbon = carbon bond, formation by insertion into M = C bonds / Alkenylcarbene complexes, by condensation, insertion / Carbene complexes of chromium and tungsten

Organic Syntheses via Transition Metal Complexes, 44¹). – Condensation of Methyl Carbene Complexes with Acid Amides: β -Alkoxyalkenyl- and β -Aminoalkenyl Carbene Complexes of Chromium and Tungsten – Competition of Condensation and Insertion

The condensation of the methyl(ethoxycarbene) complexes $L_nM = C(OEt)CH_3$ (4) $[L_nM = Cr(CO)_5$, $W(CO)_5]$ with acid amides $RCONR^1R^2$ (5) under the influence of $POCl_3/Et_3N$ leads stereoselectively to (E)- β -aminoalkenyl(ethoxycarbene) complexes $L_nM = C(OEt)CH = C(R)NR^1R^2$ [(E)-6] (R = H, aryl, alkyl). A condensation of 4 can also be achieved via amidium salts 11, which are easily available from 5. In this case, (E)-6 and (E)- β -alkoxyalkenyl(ethoxycarbene) complexes

Alkenylcarben-Komplexe vom Typ $L_nM = CX CR^1 = CRY$ [$L_nM = Cr(CO)_5$, Mo(CO)₅, W(CO)₅; X, Y = O(Alkyl), S(Alkyl), N(Alkyl)₂] sind auf Grund ihrer Multifunktionalität hinsichtlich ihrer reaktiven M = C- und elektronenreichen C = C-Bindungen als Synthesebausteine von Interesse. Die Komplexe erhält man in unterschiedlichen Substitutionsmustern nach verschiedenen Verfahren (Tab. 1), durch a) Isomerisierung von Ketenimin-Komplexen [Gl. (1)],

b) Insertion von 1-Aminoalkinen in M = C-Bindungen von Alkoxy- und Thioalkoxycarben-Komplexen [Gl. (2)],

c) Addition sekundärer Amine an Alkinyl(alkoxycarben)-Komplexe [Gl. (3)],

d) Kondensation von Elektrophilen mit Alkyl(alkoxycarben)-Komplexen [Gl. (4)],

e) Addition von Alkenyllithium-Verbindungen an $L_{n+1}M$ (M = Cr, Mo, W, L = CO, n = 5) und nachfolgende Alkylierung der Acylate [Gl. (5)].

$$L_n M[RN = C = C(OCH_3)CH_3]$$

$$\rightarrow L_n M = C(NHR)C(OCH_3) = CH_2$$
(1)

$$L_n M = C(OCH_3)C_6H_5 + R_2NC \equiv CR^1$$
 (2)

$$\rightarrow$$
 L_nM = C(NR₂)C(R¹) = C(OCH₃)C₆H₅

$$L_n M = C(OCH_3)C \equiv CC_6H_5 + R_2NH$$

$$\rightarrow L_n M = C(OCH_3)CH = C(R_2N)C_6H_5$$
(3)

 $L_n M = C(OCH_3)CH_3 + X_2YCR$ $\rightarrow L_n M = C(OCH_3)CH = C(Y)R + 2HX$ $L_nM = C(OEt)CH = C(R)OEt$ [(*E*)-13] were obtained. Via the cyclic amidium salts 15 and 20 four-to seven-membered lactams (*E*)-17 and (*E*)-21 a – d are accessible. The reaction of 4 with acid amides $RCH_2CONR^1R^2$ (2) and $POCl_3/Et_3N$ yields mainly insertion products $L_nM = C(NR^1R^2)C(R) = C(OEt)CH_3$ [(*E*)/(*Z*)-22] and only small amounts of condensation products $L_nM = C(OEt)CH = C(CH_2R)NR^1R^2$ [(*E*)-23].

$$L_{n}M(CO) \xrightarrow{1.\ LiCH = CHR^{1}} L_{n}M = C(OR)CH = CHR^{1}$$

$$\xrightarrow{+ R_{2}NH} L_{n}M = C(NR_{2})CH = CHR^{1}$$
(5)

Tab. 1. Substitutionsmuster und Darstellungsverfahren (Darst.) bisher bekannter Alkenylcarben-Komplexe $L_nM = C(X)CR^1 = CYR$ von Chrom, Molybdän, Wolfram und Mangan

L _n M	х	Y	Darst.	Lit.
Cr(CO) ₅	OMe	OMe	d	2)
$Cr(CO)_{5}$	OEt	NMe ₂	c . d	3,4)
$Cr(CO)_5$	OEt	Aryl, H	d, e	5,6)
Cr(CO) ₅	NEt ₂	OMe	b, f	7 - 10, 11)
$Cr(CO)_5$	NEt,	S(Alkyl)	b	12)
$Cr(CO)_5$	NMe ₂	NMe ₂	с	3)
Cr(CO) ₅	NHMe	Aryl, H	d, a	13,14)
Mo(CO) ₅	OEt	Aryl.		
()0		CH = CHC ₆ H ₅	d	15)
Mo(CO) ₅	NMe ₂	OEt	f	11)
W(CO) ₅	OMe	OCO(Alkyl)	d	16)
W(CO) ₅	OEt	NMe ₂	с	3)
W(CO) ₅	OMe	Н	e	17)
W(CO) ₅	OMe	Alkyl, Aryl	d	2,18)
W(CO) ₅	SEt	OEt	b	19)
W(CO) ₅	NMe_2	OEt	f	11)
W(CO) ₅	NEt ₂	S(Alkyl)	b	12)
W(CO) ₅	NMe ₂	NMe ₂	с	3)
W(CO) ₅	NMe_2	H, C ₆ H ₅ ,		
·		$CH = CHC_6H_5$	d	20)
Mn(CO) ₂ (MeCp)	NEt ₂	OMe	b	9)

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990

(4)

Wir beschrieben kürzlich ein neues Verfahren f [Gl. (6)] zum Aufbau von β -Ethoxyalkenyl(aminocarben)-Komplexen $L_n M = C(NR^1R^2)CR = C(OEt)C_6H_5$ (3) aus Phenyl(ethoxycarben)-Komplexen $L_n M = C(OEt)C_6H_5$ (1) und Säureamiden 2. 1 reagiert mit 2 und POCl₃/Et₃N unter Insertion einer C₂-Einheit in die M = C-Bindung von 1¹¹). Für die Reaktion sind Säureamide 2 mit α -CH₂-Gruppen erforderlich.

 $L_n M = (CO)_5 Cr (a), (CO)_5 Mo (b), (CO)_5 W (c)$

Kondensation von 4 mit offenkettigen Säureamiden 5

Anders als bei Phenyl(ethoxycarben)-Komplexen 1 sind bei Kondensationsreaktionen von Methyl(ethoxycarben)-Komplexen 4 mit Säureamiden 2 im Prinzip sowohl die Insertion einer C₂-Einheit in die M = C-Bindung [analog Gl. (6)] als auch der Aufbau einer C = C-Bindung zur (CHaciden) CH₃-Gruppe denkbar [Gl. (7)-(11)]. Kondensationsreaktionen an der α -CH₃-Gruppe von 4 wurden bereits mit Aldehyden^{2,5}, Orthoestern¹⁶⁾ und Aminoorthoestern⁴⁾ (s. Tab. 1) durchgeführt. Wir finden, daß diese auch mit Säureamiden möglich sind, wofür sich vor allem zwei Verfahren bewährt haben:

a) Kondensation mit POCl₃/Et₃N

In günstigen Fällen kann die Kondensation von 4 mit 5 im "Eintopf-Verfahren" mit POCl₃/Et₃N in Ether erreicht werden [Gl. (7)]. Man erhält dabei ausschließlich β -Aminoalkenyl-Komplexe (E)-6, die eine (E)-Konfiguration an der C=C-Bindung aufweisen.

 $L_n M = Cr(CO)_5$ (4a, 6a), $W(CO)_5$ (4b, 6b)

Mit Formamiden (**5a**, **b**), Benzamid (**5c**) und Pivaloylamid (**5d**) sind Insertionsreaktionen gemäß Gl. (6) prinzipiell nicht möglich. Daher tritt bei der Umsetzung von 4 mit diesen Säureamiden ausschließlich Kondensation gemäß Gl. (7) ein. Somit lassen sich nach unserem Verfahren aus einfachen und leicht zugänglichen Komponenten rasch die (E)- β -Alkenylamino(ethoxycarben)-Komplexe (E)-**6** herstellen. Von zunehmendem Raumbedarf der Substituenten am α -Kohlenstoff-Atom (Tab. 2) wird die Reaktion allerdings ungünstig beeinflußt.

Zum Reaktionsablauf stellen wir uns vor, daß 4 durch Deprotonierung mit Et_3N im Gleichgewicht die konjugierte Base 7 bildet und die Säureamide 5 durch POCl₃ in Methyleniminium-Salze 8 übergeführt werden. Durch Addition von 7 an 8 erhält man eine Zwischenstufe 9, die unter Eliminierung von HCl zu (E)-6 zerfällt.

b) Kondensation über Amidium-Salze

Die Kondensation von **4a,b** mit **5** läßt sich in einigen Fällen mit Vorteil über Amidium-Salze **11** durchführen. Dazu wird **5** mit Triethyloxonium-tetrafluoroborat (**10**) zunächst in **11** umgewandelt²¹ [Gl. (8)] und dieses anschlie-Bend in Gegenwart von Et₃N mit **4** kondensiert. Im Gegensatz zur Kondensation mit POCl₃/Et₃N nach Gl. (7) erhält man in diesem Fall zwei Produkte: (*E*)-**6** und (*E*)-**13**.

Die Produktverteilung läßt sich plausibel deuten, wenn man eine ("tetraedrische") Zwischenstufe 12 annimmt, die

Tab. 2. Substitutionsmuster von 5a-f und von β -Alkenylaminocarben-Komplexen (E)-6a-f sowie Ausbeuten [Gl. (7)] und typische chemische Verschiebungen der ¹³C-NMR-Signale von (E)-6(vgl. Exp. Teil)

5, 6	L _n M	R	R ⁱ	R ²	Ausb. 6 (%)	δ(C-1) (ppm)	δ(C-2) (ppm)	δ(C-3) (ppm)
s-trans -a s-cis- a	(C O)5W	н	CH3	CH3	24	a) 262.4	120.4 111.9	149.7 173.6
s-trans-b s-cis-b	(CO) ₅ W	н	CH3	C ₆ H ₅	64	2 79.3 27 4 .5	122.1 114.5	14 1.5 168.1
c	(CO) ₅ W	C ₆ H ₅	CH3	CH3	75	271.5	121.0	158.8
đ	(CO) ₅ W	(CH ₃) ₃ C	CH3	CH3	0		_	_
e	(CO)5W	(CH ₃) ₂ CH	CH3	CH3	11	a)	a)	a)
f	(CO) ₅ W	(CH ₃) ₃ CCH ₂	CH3	CH_3	13	262.6	122.6	161.6

^{a)} Nicht ermittelt.

unter Abspaltung von EtOH [durch 11 als $RC(OEt)_2NR^1R^2$] spontan zu (E)-6 bzw. unter Abspaltung von HNR^1R^2 [durch 11 als $RC(OEt)(NR^1R^2)_2$] zu 13 zerfällt. Zur vollständigen Umsetzung ist ein Überschuß an 11 erforderlich, da 11 in einer Nebenreaktion eine Alkylierung von Et₃N bewirkt.

Tab. 3. Substitutionsmuster von (E)-6 und (E)-13, sowie Produktverhältnis (E)-6:(E)-13

6, 13	L_nM	R	R ¹	R ²	Ausb. 6:13 (%)
g	Cr(CO) ₅	H	CH ₃	CH ₃	85:10
h	Cr(CO) ₅	CH₃	CH ₃	CH ₃	57:0
a	W(CO) ₅	H	CH ₃	CH ₃	66:11
i	W(CO) ₅	CH₃	CH ₃	CH ₃	50:0

Kondensation von 4 mit cyclischen Säureamiden

Auch cyclische Säureamide lassen sich mit 4 kondensieren. Eine gewisse Sonderstellung nimmt dabei das β -Lactam 14 ein. Dieses liefert nach Überführung in ein Amidium-Salz²²⁾ 15 zwei Komplexe (E)-17 und (E)-18 (17% bzw. 39%) [Gl. (9)]. 14 + 10 \rightarrow 15

Wie bei den offenkettigen Säureamiden [Gl. (8)] gehen wir davon aus, daß durch Abspaltung von EtOH aus einer ("tetraedrischen") Zwischenstufe 16 der cyclische Komplex (E)-17 bzw. durch Abspaltung der Amino-Funktion die offenkettige Verbindung (E)-18 entsteht. Vermutlich aus Gründen der Ringspannung wird letzterer Reaktionsverlauf bevorzugt.

Die Kondensation von 4 gelingt auch mit den fünf- bis siebengliedrigen Lactamen 19a - c [Gl. (10)]; mit 19a allerdings in nur geringer Ausbeute. Zur Alkylierung von 19 hat sich Dimethylsulfat bewährt.

$$19 + (CH_3O)_2SO_2 \rightarrow 20$$

Im Gegensatz zum Vierring-Lactam 14 werden mit 19 keine offenkettigen β -Alkoxyalkenyl-Komplexe gebildet.

Chem. Ber. 123 (1990) 611-620

Tab.	4.	Einige	charakteristische	chemische	Verschiebungen	der
		Kol	alenstoff-Atome vo	on (E)-17 ur	nd (E)- 21	

	L_nM	n	Ausb. (%)	δ (C-1) (ppm)	δ (C-2) (ppm)	δ (C-3) (ppm)
(E)- 17	Cr(CO) ₅	2	17 ^{a)}	305.7	b)	153.6
(E)- 21 a	$Cr(CO)_5$	3	5	287.4	113.2	158.1
(E)- 21 b	Cr(CO) ₅	4	44	282.2	117.2	157.2
(E)- 21 c	Cr(CO) ₅	5	58	285.6	118.7	163.1
(E) -21 d	W(CO) ₅	4	43	262.7	119.9	160.0

^{a)} Als Hauptprodukt entsteht (E)-18. – ^{b)} Zuordnung nicht eindeutig, da im Bereich der aromatischen Kohlenstoff-Atome.

Konkurrenz zwischen Insertion und Kondensation bei der Umsetzung von 4 mit Säureamiden 2a-c

Bei der Umsetzung von 4 mit Säureamiden RCH₂-CONR¹R² (2) (die eine α -CH₂-Gruppe enthalten) in Gegenwart von POCl₃/Et₃N erhält man (anders als bei der Umsetzung von 4 mit den Säureamiden **5a**-**f**) überwiegend Insertionsprodukte¹¹⁾ (*E*)/(*Z*)-**22** in die M=C-Bindung [Gl. (11)], daneben jedoch auch Kondensationsprodukte (*E*)-**23**, wenngleich nur in untergeordnetem Maß (Tab. 5).

Tab. 5. Substitutionsmuster von (E)/(Z)-22 und (E)-23, Gesamtausbeute sowie Produktverhältnis Insertion:Kondensation bei Umsetzung von 4 mit 2 in Gegenwart von POCl₃/Et₃N (R¹ = R² = CH₃)

22, 23	L _n M	R	Ausb. (%)	(E)/(Z)-22: (E)-23
a	W(CO) ₅	H	56	10/0.2:2
b	W(CO) ₅	CH ₃	28	10/4 :1
с	W(CO) ₅	C ₆ H ₅	32	10/4 :1
d	$Cr(CO)_5$	Н	71	10/7 :0

Spektroskopie der Carben-Komplexe

Die Strukturen der Carben-Komplexe wurden spektroskopisch ermittelt. Elektronenreiche β -Alkoxy- bzw. β -Aminoalkenyl-Gruppen bewirken im Schwingungsspektrum eine bathochrome Verschiebung der v(C \equiv O)-Frequenzen gegenüber nichtkonjugierten Systemen (Tab. 6).

¹H-NMR-Messungen erlauben eine meist eindeutige Unterscheidung von 3-Alkoxy-1-aminoalkenyl- und 1-Alkoxy-3-aminoalkenyl-Komplexen **22** bzw. **23** (Tab. 7), da die Resonanzsignale von 1-OCH₂-Gruppen bei tieferem Feld auftreten als die von 3-OCH₂-Gruppen. Entsprechendes gilt auch für 1-NCH₃ und 3-NCH₃. Die Lage der NCH₃-Signale hängt zudem stark vom Lösungsmittel ab; sie liegen in Benzol ca. 1 ppm bei höherem Feld als in Chloroform (Tab. 7).

	L _n M	x	R		$v(C \equiv O)$ -Frequen	zen { \tilde{v} [cm ⁻¹] (%)	}
4a	Cr(CO) ₅ Cr(CO) ₅	OEt NMe ₂	CH ₃ CH ₃	2063.6 (20) 2056.1 (8)	1961.6 (40) 1967.4 (2)	1946.2 (100) 1930.7 (100)	1921.1 (3)
6g	Cr(CO) ₅	OEt	$CH = CHNMe_2$	2050.3 (20)	1971.2 (10)	1921.1 (100)	
13g	Cr(CO) ₅	OEt	CH=CHOEt	2058.0 (20)	1979.0 (3)	1942.3 (100)	
4b	W(CO) ₅	OEt	CH ₃	2071.5 (10)		1955.8 (40)	1944.2 (100)
6a	W(CO) ₅	OEt	$CH = CHNMe_2$	2060.0 (15)	1971.0 (6)		1929.4 (100)
22a	W(CO) ₅	NMe ₂	CH=CHOEt	2062 (17)	1973 (14)	1935 (93)	1925 (100)

Tab. 6. Einfluß elektronenreicher β -Alkoxy- bzw. β -Aminoalkenyl-Gruppen auf die v(C \equiv O)-Frequenzen von L_nM = CXR in Hexan

Tab. 7. Vergleich einiger ¹H- und ¹³C-NMR-Verschiebungen von (E)-22 und (E)-23

	δ, 'H-NMR	L			δ, ¹³ C-NM	IR				
	3-OCH ₂	1 -N (CH ₃) ₂	LM	M = C	C-3	3-OCH ₂		1-N(CH ₃) ₂	LM
(E)- 22 a	3.47	2.98	2.18	b)	247.9	145.6	63.4	53.9	43.8	a)
(E)- 22 b	3.78	3.78	3.24	c)	258.9	137.9	64.2	53.4	42.7	c)
(E)- 22 c	3.90	3.95	3.46	C)	256.0	139.3	64.0	53.8	43.3	C)
(E)- 22 d	3.60	3.42	2.80	b)	273.3	143.5	63.0	50.4	44.2	b)
	1-OCH ₂	3-N(CH ₃) ₂	LM	M = C	C-3	1-OCH ₂		3-N(CH ₃) ₂	LM
(E)- 23 a	4.53	2.10	1.70	b)	259.4	162.7	76.6	42.4	41.3	a)
(E)- 23 b	4.59	3.14	br.	c)	a)	aj	a)		a) 1)	c)
(E)- 23 c	4.46	3.10	br.	C)	271.0	158.2	77.2		d)	C)

Lösungsmittel (LM): a) $[D_6]$ Aceton. -b C₆ D_6 /CS₂ (1:1). -c CDCl₃. -d Nicht ermittelt.

Die 1-Aminocarben-Komplexe **22** zeigen in der (*E*)-Reihe die Resonanzsignale δ (C-1) und δ (C-3) sowie δ (1-NCH₃) bei tieferem Feld als in der (*Z*)-Reihe¹¹.

Konfiguration und Konformation von 6

Die Komplexe (E)-6 können in vier isomeren Formen A-D auftreten. A und C (B und D) unterscheiden sich durch die Konfiguration der C=C-Bindung, A und B (C und D) durch die Konformation.

Durch Kondensationsreaktionen nach Gl. (7)-(10) erhält man Komplexe mit ausschließlich (*E*)-Konfiguration. Hingegen liefern Insertionsreaktionen [Gl. (11)]¹¹⁾ Komplexge-

mische mit (*E*)- und (*Z*)-Konfiguration. Als besonders aussagekräftig für die Strukturzuordnung erwiesen sich die ¹³C-NMR-Spektren im Verein mit Trendanalysen durch Vergleich¹¹⁾ mit ähnlich gebauten Komplexen, von denen jeweils Isomerenpaare zur Verfügung standen. Daraus wurde folgende Regel abgeleitet, die den γ -Effekt von L_nM widerspiegelt:

$\delta(M=C)$ -s-cis < $\delta(M=C)$ -s-trans, $\delta(C-3)$ -s-cis > $\delta(C-3)$ -s-trans

Unsere Konformationszuordnung stützt sich auf Kristallstrukturanalysen von $(CO)_5Cr = C(OMe)CH = CH(NMe_2)^{4}$ und von $(CO)_5Cr = C(NH-c-C_6H_{11})C(OMe) = CH_2^{14,23,24}$, die jeweils eine *s-cis*-Anordnung der Alkenyl-Reste gemäß **B** ergaben. Wir konnten anhand dynamischer ¹H-NMR-Spektren von (*E*)-**6a** und **b** jedoch zeigen, daß Isomere **A** und **B** in Lösung sich auf der NMR-Zeitskala rasch ineinander umwandeln. Eine Konfigurationsänderung der HC = CH-Einheit scheidet dabei aus, da die ³J-Protonen-Kopplungen der AX-Systeme in **A** und **B** gleich groß sind [(*E*)-**6a**: ³J = 12.5 Hz in **A** und **B**; (*E*)-**6b**: ³J = 12.2 Hz in **A** und **B**].

Bei +10°C (C₆D₆, 300 MHz) zeigt das untere ¹H-NMR-Grenzspektrum von **6a** (Abb. 1) getrennte Resonanzsignale für (*E*)-**6a**-A und (*E*)-**6a**-B. Das *s*-*cis*-Isomer B (Resonanzsignale von A durch "Pfeilspitze" gekennzeichnet) überwiegt im Gleichgewicht [A: B = 5:8 (in C₆D₆), 3:8 (in [D₆]-Aceton); s. Exp. Teil]. Beim Erwärmen zeigt sich eine Linienverbreiterung und schließlich die Koaleszenz von Re-

Abb. 1. ¹H-NMR-Spektren von (E)-**6a** bei verschiedenen Temperaturen (C₆D₆, 300 MHz)

sonanzsignalen jeweils entsprechender Protonen von A und B. Oberhalb 100°C erhält man scharfe, gemittelte Signale. Die Umlagerung $A \rightleftharpoons B$ erfolgt durch gehinderte Rotation um die Bindung (C-1)-(C-2) [ΔG^{+} (60°C) = 57 kJ/mol], die infolge eines "push-pull"-Effekts gemäß E partiellen Doppelbindungscharakter aufweist.

Die Annahme liegt nahe, daß mit zunehmendem Raumbedarf von Substituenten an C-3 das Gleichgewicht $A \rightleftharpoons B$ auf die Seite von A verschoben wird.

Die von uns erstmals beschriebenen Kondensationsreaktionen von Methyl(ethoxycarben)-Komplexen von Chrom und Wolfram mit Säureamiden ermöglichen die selektive Darstellung von β -Aminoalkenyl(ethoxycarben)-Komplexen. Tertiäre Säureamide mit α -CH₂-Gruppen können neben Kondensations- auch Insertionsprodukte bilden. Das Verhältnis Kondensation:Insertion hängt wesentlich vom Raumbedarf der Substituenten am Säureamid ab.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft unterstützt.

Experimenteller Teil

Umsetzung und Aufarbeitung unter Inertgas. – Alle Lösungsmittel waren trocken und frisch destilliert. – ¹H- und ¹³C-NMR: Bruker WM 300 (Zuordnung durch DR-Experimente bzw. Breitband-, DEPT- und "gated-decoupling"-Messungen). – IR: Digilab FTS 45. – MS: Finnigan MAT 312. – Elementaranalysen: Perkin-Elmer 240 Elemental Analyser. – Säulenchromatographie: Merck-Kieselgel 100. – Dünnschichtchromatographie: Merck-DC-Alufolien Kieselgel 60 F 254. – Petrolether-Fraktion: $40-60^{\circ}$ C. – R_{Γ} Werte beziehen sich jeweils auf DC-Tests. – Die säulenchromatographische Isolierung der zersetzlichen Komplexe erfolgte an möglichst kurzen Säulen unter zügiger Elution (maximal 5 min). – Darstellung der Carben-Komplexe 4 nach Lit.¹⁴, der Ethoxymethyleniminium-Salze 11 nach Lit.²¹ durch Umsetzung der Amide 5, 14, (E)-21 mit [Et₃O]BF₄ (10) (Dichlormethan, 24 h, 20°C) bzw. Methoxymethyleniminium-Salze 20 durch Umsetzung von 19 mit Dimethylsulfat (ohne Lösungsmittel, 2–3 h, 60–80°C) jeweils im Verhältnis 1:1.

a) Kondensation von 4b mit 5 durch POCl₃/Et₃N

Pentacarbonyl[(2E)-3-(dimethylamino)-1-ethoxypropenyliden]wolfram [(E)-6a]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 2 ml Ether in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 404 mg (4.00 mmol) Et₃N, 146 mg (2.00 mmol) DMF (5a) und 307 mg (2.00 mmol) POCl₃ in 2 ml Ether. Nach 24 h bei 20°C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen und die Lösung an Kieselgel chromatographiert (Säule 30 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (4:1) eine gelbe Zone mit (E)-6a [$R_f = 0.46$ in Petrolether/ Dichlormethan (4:1), 100 mg (24%) gelbe Kristalle, Schmp. 124°C (Zers.) aus Petrolether/Ether (3:1) bei -15°C]. (E)-6a bildet ein 1.0:2.6-s-trans/s-cis-Isomerengemisch, das sich im rasch einstellenden Gleichgewicht befindet. In den NMR-Spektren bei 20°C lassen sich beide Formen nebeneinander beobachten.

s-trans-(*E*)-**6a**: ¹H-NMR ([D₆]Aceton, 20 °C): $\delta = 7.76$ (1 H, d, ³*J* = 11 Hz, 3-H), 6.31 (1 H, d, ³*J* = 11 Hz, 2-H), 4.52 (2 H, q, OCH₂), 3.28 und 3.03 (je 3 H, je s, je NCH₃), 1.41 (3 H, t, CH₃Et). – ¹³C-NMR ([D₆]Aceton, 20 °C): δ (W = C) fehlt, eventuell stark verbreitert; $\delta = 209.6$ und 203.0 [1:4, W(CO)₅], 149.7 (C-3), 120.4 (C-2), 76.4 (1-OCH₂), 46.4 und 37.9 (je NCH₃), 16.0 (CH₃). – IR (He-xan): \tilde{v} (%) = 2060 cm⁻¹ (15), 1971 (6), 1929 (100) [v(C=O)]; 1616 [v(C=C)]. – MS (70 eV): $m/z(^{184}W)$ (%) = 451 (19) [M[⊕]], 423 (18), 395 (14), 367 (22), 339 (34), 311 (66), 280 (96), 252 (100), 127 (18) [Ligand[⊕]], 98 (65) [127[⊕] – Et].

s-cis-(E)-**6a**: ¹H-NMR ([D₆]Aceton, 20 °C): δ = 8.13 (1 H, d, ³J = 11 Hz, 3-H), 6.04 (1 H, d, ³J = 11 Hz, 2-H), 4.13 (2 H, q, OCH₂), 3.43 und 3.17 (je 3 H, je s, je NCH₃), 1.41 (3 H, t, CH₃Et). $-^{13}$ C-NMR ([D₆]Aceton, 20 °C): δ = 262.4 (W = C), 205.3 und 201.5 [1:4, W(CO)₅], 173.6 (C-3), 111.9 (C-2), 67.9 (1-OCH₂), 47.5 und 39.3 (je NCH₃), 15.1 (CH₃). - IR- und Massenspektren wie bei s-trans-(E)-**6a**. C₁₂H₁₃NO₆W (451.1) Ber. C 31.95 H 2.90 N 3.11 Gef. C 31.81 H 3.06 N 3.57

Pentacarbonyl[(2E)-1-ethoxy-3-(N-methylanilino)propenyliden]wolfram [(E)-6b]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 2 ml Ether in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20 °C unter Rühren eine Lösung von 404 mg (4.00 mmol) Et₃N, 270 mg (2.00 mmol) 5b und 307 mg (2.00 mmol) POCl₃ in 2 ml Ether. Nach 12 h bei 20 °C wird zentrifugiert, der Rückstand 3mal mit 2 ml Ether gewaschen, und die vereinigten Lösungen werden eingedampft (15 Torr, 20 °C). Aus Ether/Petrolether (2:1) bei -78 °C erhält man (E)-6b [$R_f =$ 0.53 in Petrolether/Dichlormethan (3:1), 330 mg (64%) gelbe Kristalle, Schmp. 93 °C (Zers.)]. (E)-6b bildet ein 1.3:5.0-s-trans/s-cis-Isomerengemisch, das sich im rasch einstellenden Gleichgewicht befindet. In den NMR-Spektren bei 20 °C lassen sich beide Formen nebeneinander beobachten. *s-trans-(E)-***6b**: ¹H-NMR (CDCl₃, -40° C): $\delta = 7.86 (1 \text{ H}, \text{d}, {}^{3}J = 12 \text{ Hz}, 3-\text{H})$; 7.48, 7.38, 7.23 (3:1:1, je m, C₆H₅); 6.67 (1 H, d, {}^{3}J = 12 \text{ Hz}, 2-\text{H}); 4.66 (2H, q, OCH₂); 3.45 (3H, s, NCH₃); 1.50 (3H, t, CH₃ von Et). $-^{13}$ C-NMR ([D₆]Aceton, -40° C): $\delta = 279.2$ (W = C); 204.5 und 198.9 [1:4, W(CO)₅]; 149.6 (*i*-C von C₆H₅); 141.5 (C-3); 129.7, 126.3, 122.1, 121.2 (2:1:1:2, C-2 bis -6 von C₆H₅); 141.5 (C-2), 76.4 (1-OCH₂), 37.7 (NCH₃), 15.2 (CH₃). - IR (Hexan): \tilde{v} (%) = 2060 cm⁻¹ (19), 1969 (3), 1933 (100) [v(C = O)]; 1630 [v(C = C)]. - MS (70 eV): m/z(¹⁸⁴W) (%) = 513 (11) [M[⊕]], 485 (6), 457 (1), 429 (28), 401 (6), 373 (32), 344 (66), 160 (30) [Ligand[⊕] - Et], 144 (45) [Ligand[⊕] - OEt], 51 (100).

s-cis-(*E*)-**6b**: ¹H-NMR (CDCl₃, -40 °C): $\delta = 8.55$ (1 H, d, ³*J* = 12 Hz, 3-H); 7.48, 7.38, 7.23 (3:1:1, je m, C₆H₅); 6.16 (1 H, d, ³*J* = 12 Hz, 2-H), 4.32 (2H, q, OCH₂), 3.53 (3H, s, NCH₃), 1.50 (3 H, t, CH₃ von Et). - ¹³C-NMR ([D₆]Aceton, -40 °C): $\delta = 274.5$ (W = C); 204.2 und 199.5 [1:4, W(CO)₅, ¹*J*(¹⁸³W-¹³C) = 128 Hz], 168.1 (C-3); 145.8 (*i*-C₆H₅); 129.9, 127.0, 120.8 (2:1:2, C-2 bis -6 von C₆H₅); 114.5 (C-2); 69.0 (1-OCH₂); 38.8 (NCH₃); 14.6 (CH₃). - IR-und Massen-Spektren wie bei *s-trans-*(*E*)-**6b**.

 $\begin{array}{c} C_{17}H_{15}NO_6W \ (513.2) \\ \text{Gef. C } 39.79 \ H \ 2.95 \ N \ 2.73 \\ \text{Gef. C } 39.51 \ H \ 2.98 \ N \ 2.68 \\ \end{array}$

Pentacarbonyl (2E)-3-(dimethylamino)-1-ethoxy-3-phenylpropenyliden/wolfram [(E)-6c]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 2 ml Ether in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 404 mg (4.00 mmol) Et₃N, 298 mg (2.00 mmol) 5c und 307 mg (2.00 mmol) POCl₃ in 2 ml Ether. Unter Farbvertiefung scheidet sich dabei ein gelber Festkörper ab. Nach 48 h bei 20°C wird zentrifugiert, der Rückstand 3mal mit 2 ml Ether gewaschen, und die vereinigten Lösungen werden eingedampft (15 Torr, 20°C). Aus Ether/Petrolether (2:1) bei -78°C erhält man (E)-6c [$R_t = 0.4$ in Petrolether/Dichlormethan (3:1), 395 mg (75%) gelbe Kristalle, Schmp. 120 °C (Zers.)]. - ¹H-NMR $(CDCl_3)$: $\delta = 7.40, 7.13 (3:2, C_6H_5)$; 6.56 (1 H, s, 2-H), 4.04 (2 H, q, OCH₂), 3.20 und 2.80 (je 3H, je s, je NCH₃), 0.58 (3H, t, CH₃ von Et). $-{}^{13}$ C-NMR (CDCl₃): $\delta = 271.5$ (W = C); 204.3 und 199.8 [1:4, $W(CO)_5$, ${}^{1}J({}^{183}W{}^{-13}C) = 127 Hz$; 158.8 (C-3); 137.4 (*i*-C von C₆H₅); 128.7, 128.6, 128.4 (1:2:2, C₆H₅); 121.0 (C-2); 75.6 (1-OCH₂); 41.5 und 41.1 (je NCH₃); 13.9 (CH₃). - IR (Hexan): \tilde{v} (%) = 2058 cm⁻¹ (18), 1964 (5), 1927 (100) [$v(C \equiv O)$]; 1628 [v(C = C)]. - MS (70 eV): $m/z(^{184}W)$ (%) = 527 (1.5) [M^{\oplus}], 499 (1.5), 443 (10), 415 (3), 387 (10), 149 (32), 111 (17), 97 (26), 57 (100).

$$\begin{array}{c} C_{18}H_{17}NO_6W \ (527.2) \\ Gef. \ C \ 41.01 \ H \ 3.25 \ N \ 2.66 \\ Gef. \ C \ 41.09 \ H \ 3.32 \ N \ 2.82 \end{array}$$

Pentacarbonyl (2E)-3-(dimethylamino)-1-ethoxy-4-methylbutenyliden | wolfram [(E)-6e]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 2 ml Ether in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 404 mg (4.00 mmol) Et₃N, 298 mg (2.00 mmol) 5e und 307 mg (2.00 mmol) POCl₃ in 2 ml Ether. Unter Farbvertiefung scheidet sich dabei ein gelber Festkörper ab. Nach 3 d bei 20°C wird zentrifugiert, der Rückstand 3mal mit 2 ml Ether gewaschen, und die vereinigten Lösungen werden wie oben chromatographiert; (E)-6e $\lceil R_{\rm f} = 0.3$ in Petrolether/Dichlormethan (3:1), 54 mg (11%) gelbe Kristalle, Schmp. 82 °C (Zers.)]. – ¹H-NMR (CDCl₃): δ = 6.24 (1 H, s, 2-H); 4.50 (2 H, q, OCH₂), 2.30 (1 H, sept, CH von *i*Pr), 2.09 (6H, br. s, 2 NCH₃), 1.06 (3H, t, CH₃Et), 0.76 (6H, d, 3 CH₃ von *i*Pr). – IR (Hexan): \tilde{v} (%) = 2056 cm⁻¹ (11), 1960 (6), 1925 (100) $[v(C \equiv O)]$; 1640 [v(C = C)]. - MS (70 eV): $m/z(^{184}W)$ (%) = 493 (1) [M[⊕]], 465 (1.5), 409 (3), 381 (2), 353 (8), 322 (10), 292 (12), 140 (11) [Ligand^{\oplus} - Et], 124 (13) [Ligand^{\oplus} - OEt], 57 (100). C₁₅H₁₉NO₆W (493.2) Ber. C 36.53 H 3.88 N 2.84

Gef. C 36.73 H 4.03 N 2.71

Pentacarbonyl (2E)-3-(dimethylamino)-1-ethoxy-5,5-dimethylhexenyliden/wolfram [(E)-6f]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 2 ml Ether in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 404 mg (4.00 mmol) Et₃N, 298 mg (2.00 mmol) 5f und 307 mg (2.00 mmol) POCl₃ in 2 ml Ether. Unter Farbvertiefung scheidet sich dabei ein gelber Festkörper ab. Nach 24 h bei 20°C wird zentrifugiert, der Rückstand 3mal mit 2 ml Ether gewaschen, und die vereinigten Lösungen werden wie oben chromatographiert; (E)-6f $\lceil R_f \rceil = 0.6$ in Petrolether/Dichlormethan (3:1), 70 mg (13%) gelbe Kristalle, Schmp. 88°C (Zers.)]. - ¹H-NMR (C_6D_6): $\delta = 6.45$ (1 H, s, 2-H), 4.52 (2 H, q, OCH₂), 2.46 (2 H, br. s, CH2-tBu), 2.19 und 1.94 (je 3H, je br. s, je NCH3), 1.11 (3H, q, CH₃ von Et), 0.75 [9 H, s, C(CH₃)₃]. - ¹³C-NMR (C₆D₆): δ = 262.6 (W=C), 204.5 und 200.9 [1:4, W(CO)₅, ${}^{1}J({}^{183}W-{}^{13}C) =$ 127 Hz], 161.6 (C-3), 122.6 (C-2), 76.3 (OCH2), 42.0 und 40.6 (je NCH₃, br.), 41.1 (CH₂-tBu), 33.7 [C(CH₃)₃], 30.0 [C(CH₃)₃], 15.4 (CH₃ von Et). – IR (Hexan): \tilde{v} (%) = 2056 cm⁻¹ (20), 1962 (2), 1925 (100) $[v(C \equiv O)]$; 1630 [v(C = C)]. - MS (70 eV): $m/z(^{184}W)$ $(\%) = 521 (1) [M^{\oplus}], 493 (1), 465 (1), 437 (2), 409 (1), 381 (4), 149$ (16), 111 (14), 97 (23), 57 (100).

 $\begin{array}{c} C_{17}H_{23}NO_6W \ (521.2) \\ Gef. \ C \ 38.82 \ H \ 4.10 \ N \ 2.56 \end{array}$

b) Kondensationen mit Amidium-Salzen

Pentacarbonyl[(2E)-3-(dimethylamino)-1-ethoxypropenyliden]chrom [(E)-6g], Pentacarbonyl[1,3-diethoxy-(E)-propenyliden]chrom [(E)-13g]: Zu einer Lösung von 264 mg (1.00 mmol) 4a und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 189 mg (1.00 mmol) 11 a. Die zunächst gelbe Reaktionsmischung färbt sich dabei langsam rötlich. Nach 3 h bei 20 °C wird eingedampft (15 Torr, 20 °C), in wenig Dichlormethan aufgenommen und die Lösung an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/ Dichlormethan (3:1) eine rote Zone mit (E)-13g [$R_f = 0.83$ in Petrolether/Dichlormethan (3:1), 31 mg (10%) rote Kristalle, Schmp. 43 °C aus Petrolether bei -78 °C], anschließend mit Petrolether/Dichlormethan (2:1) eine gelbe Zone mit (E)-6g [$R_f =$ 0.66 in Petrolether/Dichlormethan (2:1), 271 mg (85%) gelbe Kristalle, Schmp. 127 °C).

(*E*)-6g: ¹H-NMR ([D₆]Aceton): $\delta = 8.19$ (1H, d, ³*J* = 11.5 Hz, 3-H), 6.26 (1H, d, ³*J* = 11.5 Hz, 2-H), 4.16 (2H, q, OCH₂), 3.49 und 3.19 (je 3H, je s, je NCH₃), 1.42 (3H, t, CH₃ von Et). – ¹³C-NMR ([D₆]Aceton): $\delta = 281.1$ (Cr = C), 220.8 und 225.1 [1:4, Cr(CO)₅], 170.8 (C-3), 111.2 (C-2), 67.4 (OCH₂), 47.1 und 38.5 (je NCH₃), 14.7 (CH₃ von Et). – IR (CH₂Cl₂): \tilde{v} (%) = 2050.3 cm⁻¹ (20), 1971.2 (10), 1921.1 (100) [v(C \equiv O)]; 1613.3 (10) und 1597.1 (10). – MS (70 eV): *m/z* (%) = 319 (8) [M[⊕]], 291 (12), 263 (12), 235 (8), 207 (23), 179 (100) [M[⊕] - 5 CO], 150 (72), 122 (72), 109 (30), 96 (60).

$$\begin{array}{rl} C_{12}H_{13}CrNO_6 \ (319.2) & \text{Ber. C } 45.15 \ H \ 4.10 \ N \ 4.39 \\ & \text{Gef. C } 44.98 \ H \ 4.17 \ N \ 4.32 \end{array}$$

(*E*)-**13**g: ¹H-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 7.35$ (1 H, d, ³*J* = 11.8 Hz, 3-H), 6.69 (1 H, d, ³*J* = 11.8 Hz, 2-H), 4.60 (2 H, q, 1-OCH₂), 3.74 (2 H, q, 3-OCH₂), 1.35 und 1.16 (je 3 H, je t, je CH₃ von Et). - ¹³C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 323.0$ (Cr=C), 223.5 und 217.7 [1:4, Cr(CO)₅], 158.1 (C-3), 122.9 (C-2), 74.3 (1-OCH₂), 68.6 (3-OCH₂), 15.2 und 14.8 (je CH₃ von Et). - IR (Hexan): \tilde{v} (%) = 2058.0 cm⁻¹ (20), 1979.0 (3), 1942.3 (100) [v(C=O)]; (KBr): $\tilde{v} = 1597.1$ cm⁻¹ [v(C=C)]. - MS (70 eV): kein [M[⊕]]. - MS-FD: *m/z* (%) = 320 (0.4) [M[⊕]], 292 (0.7), 264 (0.3), 236 (0.3), 208 (1.1), 180 (4), 149 (20), 105 (100), 57 (98).

C₁₂H₁₂CrO₇ (320.2) Ber. C 45.01 H 3.78 Gef. C 44.95 H 3.72

Pentacarbonyl[(2E)-3-(dimethylamino)-1-ethoxybutenyliden]chrom [(E)-6h]: Zu einer Lösung von 264 mg (1.00 mmol) 4a und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 811 mg (4.00 mmol) 11b. Die zunächst gelbe Reaktionsmischung färbt sich dabei langsam rötlich. Nach 24 h bei 20°C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen, und die Lösung an Kieselgel chromatographiert (Säule 20 \times 2 cm). Man eluiert mit Petrolether/ Dichlormethan (3:1) eine gelbe Zone mit (E)-6h $\lceil R_f = 0.48$ in Petrolether/Dichlormethan (3:1), 190 mg (57%) gelbe Kristalle, Schmp. 106 °C aus Petrolether/Ether (4:1) bei -78 °C]. - ¹H-NMR $[C_6D_6/CS_2(1:1)]: \delta = 6.26 (1 H, s, 2-H), 4.61 (2 H, q, OCH_2),$ 2.5-2.1 (6H, br. s, NMe₂), 1.82 (3H, s, 3-CH₃), 1.21 (3H, t, CH₃ von Et). $-{}^{13}$ C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 286.7$ (Cr = C), 224.4 und 219.9 [1:4, Cr(CO)₅], 156.0 (C-3), 118.6 (C-2), 73.7 (OCH₂), 40.2 und 40.1 (je br., je NCH₃), 19.3 (3-CH₃), 15.8 (CH₃ von Et). -IR (Hexan): \tilde{v} (%) = 2048.4 cm⁻¹ (18), 1926.9 (100) [$v(C \equiv O)$]. -MS (70 eV): m/z (%) = 333 (12) [M^{\oplus}], 305 (22), 277 (8), 249 (21), 221 (28), 193 (100).

 $\begin{array}{c} C_{13}H_{15}CrNO_6 \ (333.2) \\ Gef. \ C \ 46.85 \ H \ 4.54 \ N \ 4.20 \\ Gef. \ C \ 46.73 \ H \ 4.56 \ N \ 4.25 \end{array}$

Pentacarbonyl[(2E)-3-(dimethylamino)-1-ethoxypropenyliden]wolfram [(E)-6a], Pentacarbonyl[(2E)-1,3-diethoxypropenyliden]wolfram [(E)-13a]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 189 mg (1.00 mmol) 11a. Dic zunächst gelbe Reaktionsmischung färbt sich dabei langsam rötlich. Nach 3 h bei 20°C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen und die Lösung an Kiesclgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (3:1) eine rote Zone mit (E)-13a [$R_f =$ 0.81 in Petrolether/Dichlormethan (3:1), 50 mg (11%) rote Kristalle, Schmp. 60°C aus Petrolether bei -78°C], anschließend mit Petrolether/Dichlormethan (2:1) eine gelbe Zone mit (E)-6a (300 mg, 66%).

(E)-6a: s.o.

(E)-13a: ¹H-NMR (CDCl₃): $\delta = 7.61$ (1 H, d, ³J = 11.9 Hz, 3-H), 6.78 (1 H, d, ³J = 11.9 Hz, 2-H), 4.73 (2 H, q, 1-OCH₂), 4.08 (2 H, q, 3-OCH₂), 1.55 und 1.40 (je 3 H, je t, je CH₃ von Et). $-^{13}$ C-NMR (CDCl₃): $\delta = 298.1$ (W = C), 203.6 und 198.2 [1:4, ¹J(¹⁸³W-¹³C) = 127.6 Hz, trans- und cis-CO von W(CO)₅], 160.9 (C-3), 126.0 (C-2), 77.1 (1-OCH₂), 68.8 (3-OCH₂), 14.9 und 14.6 (je CH₃ von Et). - IR (Hexan): \tilde{v} (%) = 2065.8 cm⁻¹ (20), 1938.5 (100) [v(C=O)]; (KBr): $\tilde{v} = 1597.1$ cm⁻¹ [v(C=C)]. - MS (70 eV): $m/z(^{184}$ W) (%) = 452 (28) [M[⊕]], 424 (26), 396 (17), 368 (16), 340 (10), 312 (82), 311 (100), 113 (9), 99 (7), 83 (15), 71 (34).

C₁₂H₁₂O₇W (452.1) Ber. C 31.88 H 2.68 Gef. C 32.48 H 2.91

Pentacarbonyl[(2E)-3-(dimethylamino)-1-ethoxybutenyliden]wolfram [(E)-6i]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 811 mg (4.00 mmol) 11 b. Die zunächst gelbe Reaktionsmischung färbt sich dabei langsam rötlich. Nach 24 h bei 20 °C wird eingedampft (15 Torr, 20 °C), in wenig Dichlormethan aufgenommen und an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (3:1) eine gelbe Zone mit (E)-6i [R_f = 0.51 in Petrolether/ Dichlormethan (3:1), 230 mg (50%) gelbe Kristalle, Schmp. 107 °C aus Petrolether/Ether (4:1) bei -78 °C]. - ¹H-NMR (C₆D₆): δ = 6.36 (1 H, s, 2-H), 4.53 (2 H, q, 1-OCH₂), 2.10 und 1.70 (je 3 H, je br. s, je NCH₃), 1.64 (3 H, s, 3-CH₃), 1.11 (3 H, t, CH₃ von Et). - ¹³C-NMR ([D₆]Aceton): δ = 259.4 (W=C), 205.7 und 201.0 [1:4, W(CO)₅], 162.7 (C-3), 121.2 (C-2), 76.6 (1-OCH₂), 42.4 und 41.3 (je NCH₃), 20.2 und 15.8 (je CH₃). - IR (Hexan): (%) = 2058.0 cm⁻¹ (15), 1925.0 (100) [v(C \equiv O)].

C₁₃H₁₅NO₆W (465.1) Ber. C 33.57 H 3.25 N 3.01 Gef. C 33.28 H 3.05 N 2.79

Pentacarbonyl[(2E)-1-ethoxy-2-(1,4-diphenylazetidin-2-yliden)ethyliden]chrom [(E)-17], Pentacarbonyl[(2E)-5-anilino-1,3-diethoxy-5-phenylpentyliden]chrom [(E)-18]: Zu einer Lösung von 264 mg (1.00 mmol) 4a und 354 mg (3.50 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 847 mg (2.50 mmol) 15a. Die Lösung wird dabei rötlich. Nach 24 h bei 20 °C wird eingedampft (15 Torr, 20 °C), in wenig Dichlormethan aufgenommen und die Lösung an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (3:1) eine rote Zone mit (E)-18 [$R_f = 0.5$ in Petrolether/Dichlormethan (3:1), 200 mg (39%) rote Kristalle, Schmp. 104 °C aus Petrolether bei -78 °C], anschließend mit Petrolether/ Dichlormethan (3:1) eine gelbe Zone mit (E)-17 [$R_f = 0.47$ in Petrolether/Dichlormethan (3:1), 80 mg (17%) gelbe Kristalle, Schmp. 122 °C (Zers.)].

(E)-17: ¹H-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 7.20-6.85$ (11H, m, 2 C₆H₅ und 2-H), 5.08 (1H, dd, ³J = 5.0 und 2.1 Hz, NCH von Ring), 4.67 (2H, diastereotope OCH₂), 3.30 und 2.87 (je 1H, AX-System, ²J = -16 Hz; A-Teil in d aufgespalten mit ³J = 5.0 Hz, B-Teil in d aufgespalten mit ³J = 2.1 Hz, diastereotope CH₂ von Ring), 1.27 (3H, t, CH₃ von Et). - ¹³C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 305.7$ (Cr=C); 223.8 und 218.8 [1:4, Cr(CO)₅]; 153.6, 138.3, 137.1 (C-3, sowie 2 *i*-C von C₆H₅); 129.7, 129.5, 129.1, 126.2, 125.3, 118.5, 115.8 (2:2:1:2:1, C-2 und 2 C₆H₅); 74.2 (OCH₂); 65.9 (NCH von Ring); 42.3 (CH₂ von Ring); 15.8 (CH₃). - IR (Hexan): \tilde{v} (%) = 2052.3 cm⁻¹ (25), 1934.6 (100) [v(C≡O)]; (KBr): $\tilde{v} = 1648$ cm⁻¹ [v(C=C)]. - MS (70 eV): *m/z* (%) = 469 (16) [M[@]], 447 (2), 413 (10), 385 (15), 357 (26), 329 (68), 52 (100).

 $\begin{array}{rl} C_{24}H_{19}CrNO_6 \ (469.4) & \mbox{Ber. C} \ 61.41 \ H \ 4.08 \ N \ 2.98 \\ & \mbox{Gef. C} \ 61.30 \ H \ 4.14 \ N \ 2.97 \end{array}$

(E)-18: ¹H-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 7.13 - 7.03$ (5H, m, 5-C₆H₃); 6.93, 6.54, 6.33 (2:1:2; "t", "t", "d"; NC₆H₃); 6.89 (1 H, s, 2-H), 4.08 (1 H, br. d, NH), 4.86 (2 H, diastereotope 1-OCH₂), 4.51 (1 H, dt, ³J = 8 und 6 Hz, 5-H), 3.68 (2 H, diastereotope 3-OCH₂), 2.89 und 2.59 (je 1 H, je d eines AB-Systems, ²J = 13 Hz, ³J = 8 bzw. 6 Hz, diastereotope 4-H₂), 1.40 und 1.05 (je 3 H, je t, 2 CH₃). – ¹³C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 322.7$ (Cr=C); 223.8 und 217.7 [1:4, Cr(CO)₅]; 159.4 (C-3); 147.1 und 142.9 (je *i*-C von C₆H₅); 129.4, 128.9, 127.7, 126.3, 122.3, 118.2, 113.7 (2:2:2:1:1:1:2, 2 C₆H₅ und C-2); 76.7 (1-OCH₂); 65.1 (3-OCH₂); 57.2 (NCH); 43.3 (C-4); 15.4 und 14.1 (je CH₃). – IR (Hexan): \tilde{v} (%) = 2056.1 cm⁻¹ (25), 1940.4 (100) [v(C=O)]; (KBr): $\tilde{v} = 3425$ cm⁻¹ [v(N-H)] und 1628 [v(C=C)]. – MS (70 eV): [M[⊕]] fehlt; *m*/*z* (%) = 459 (3) [M[⊕] – 2 CO], 403 (0.3), 375 (6) [M[⊕] – 5 CO], 285 (88), 231 (100).

 $\begin{array}{c} C_{26}H_{25}CrNO_7 \ (515.5) \\ Gef. \ C \ 60.58 \ H \ 4.89 \ N \ 2.73 \\ Gef. \ C \ 60.22 \ H \ 4.94 \ N \ 2.83 \end{array}$

Pentacarbonyl[(2E)-1-ethoxy-2-(N-methyl-3,4-dihydro-5H-pyrrol-2-yliden)ethyliden]chrom [(E)-21 a]: Zu einer Lösung von 264 mg (1.00 mmol) 4a und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 450 mg (2.00 mmol) 20a. Es tritt eine leichte Farbvertiefung ein. Nach 24 h bei 20°C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen und an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (3:1) eine gelbe Zone mit (E)-21a [R_f = 0.3 in Petrolether/ Dichlormethan (3:1), 17 mg (5%) gelbe Kristalle, Schmp. ab 105°C (Zers.) aus Petrolether bei -78°C]. - ¹H-NMR [C₆D₆/CS₂ (1:1)]: δ = 6.13 (1 H, s, 2-H), 4.58 (2H, q, OCH₂), 2.36 (3H, s, NCH₃), 2.78 und 2.65 (je 2H, je ,,t", NCH₂ und 4-H₂ von Ring), 2.46 (2H, m, 5-H₂ von Ring), 1.24 (3H, t, CH₃ von Et). $-{}^{13}$ C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 287.4$ (Cr = C); 224.2 und 220.1 [1:4, Cr(CO)₅]; 158.1 (C-3); 113.2 (C-2); 73.4 (OCH₂); 35.8 (NCH₃); 54.6, 33.1, 19.9 (je CH₂ von Ring); 15.8 (CH₃ von Et). - IR (Hexan): \tilde{v} (%) = 2048.4 cm⁻¹ (14), 1961.6 (5), 1926.9 (100) [v(C=O)]; (KBr): $\tilde{v} = 1642$ cm⁻¹ [v(C=C)]. - MS (70 eV): m/z (%) = 345 (3) [M[⊕]], 317 (3), 289 (1.4), 261 (2.3), 233 (5), 205 (30), 153 (10) [Ligand[⊕]], 57 (100).

> C₁₄H₁₅CrNO₆ (345.3) Ber. C 48.70 H 4.38 N 4.06 Gef. C 48.75 H 4.60 N 3.91

Pentacarbonyl (2E)-1-ethoxy-2-(N-methylperhydroazin-2yliden)ethyliden/chrom [(E)-21b]: Zu einer Lösung von 264 mg (1.00 mmol) 4a und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 478 mg (2.00 mmol) 20b. Nach 24 h bei 20°C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen und die Lösung an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (3:1) eine gelbe Zone mit (E)-21 b $[R_f = 0.4$ in Petrolether/Dichlormethan (3:1), 160 mg (44%) gelbe Kristalle, Schmp. 88°C aus Petrolether bei - 78°C]. -¹H-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 6.24$ (1H, s, 2-H), 4.58 (2H, q, OCH₂), 2.84 (3H, s, NCH₃), 3.10 und 2.77 (je 2H, je "t", NCH₂ und 4-H₂ von Ring), 1.57 und 1.48 (je 2H, je m, 5-H₂ und 6-H₂ von Ring), 1.36 (3H, t, CH₃ von Et). - ¹³C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 282.2$ (Cr=C); 224.4 und 220.1 [1:4, Cr(CO)₅]; 157.2 (C-3), 117.2 (C-2); 73.6 (OCH₂); 41.1 (NCH₃), 52.6, 31.0, 22.6, 19.4 (je CH₂) von Ring); 15.9 (CH₃ von Et). – IR (Hexan); \tilde{v} (%) = 2048.4 cm⁻¹ (13), 1925.0 (100) $\lceil v(C \equiv O) \rceil$; (KBr): $\tilde{v} = 1640 \text{ cm}^{-1} \lceil v(C = C) \rceil$. MS (70 eV): m/z (%) = 359 (5) [M^{\oplus}], 331 (5), 303 (5), 275 (9), 247 (17), 219 (100), 167 (11) [Ligand[⊕]].

C₁₅H₁₇CrNO₆ (359.3) Ber. C 50.14 H 4.77 N 3.90 Gef. C 49.70 H 4.78 N 3.91

Pentacarbonyl[(2E)-1-ethoxy-2-(N-methylperhydroazepin-2-yliden)ethyliden]chrom [(E)-21 c]: Zu einer Lösung von 264 mg (1.00 mmol) 4a und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 506 mg (2.00 mmol) 20 c. Nach 24 h bei 20 °C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen und die Lösung an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (3:1) eine gelbe Zone mit (E)-21 c [R_f = 0.5 in Petrolether/Dichlormethan (3:1), 218 mg (58%) gelbe Kristalle, Schmp. ab 90°C (Zers.) aus Petrolether bei -78°C]. - ¹H-NMR $[C_6D_6/CS_2(1:1)]: \delta = 6.11 (1 H, s, 2-H), 4.57 (2 H, q, OCH_2),$ 2.86 (3H, s, NCH₃), 3.19 und 2.76 (je 2H, je "t", NCH₂ und 4-H₂ von Ring), 1.60-1.40 (6H, m, 5- bis 7-H₂ von Ring), 1.31 (3H, t, CH₃ von Et). $- {}^{13}$ C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 285.6$ (Cr = C); 224.5 und 220.8 [1:4, Cr(CO)₅]; 163.1 (C-3); 118.7 (C-2); 73.3 (OCH₂); 41.6 (NCH₃); 54.6, 31.3, 29.1, 26.6, 24.1 (je CH₂ von Ring); 15.5 (CH₃ von Et). – IR (Hexan): \tilde{v} (%) = 2048.4 cm⁻¹ (16), 1926.9 (100) $[v(C \equiv O)];$ (KBr); $\tilde{v} = 1646 \text{ cm}^{-1} [v(C = C)]. - \text{MS} (70 \text{ eV});$ m/z (%) = 373 (6) [M[®]], 345 (5), 317 (3), 289 (10), 261 (15), 233 (100), 181 (13).

> C₁₆H₁₉CrNO₆ (373.3) Ber. C 51.48 H 5.13 N 3.75 Gef. C 51.36 H 5.32 N 3.83

Pentacarbonyl[(2E)-1-ethoxy-2-(N-methylperhydroazin-2yliden)ethyliden]wolfram [(E)-21 d]: Zu einer Lösung von 396 mg (1.00 mmol) 4b und 303 mg (3.00 mmol) Et₃N in 4 ml Dichlormethan in einem luftdicht verschraubbaren 5-ml-Glasgefäß gibt man 506 mg (2.00 mmol) 20b. Nach 24 h bei 20°C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen und die Lösung an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/Dichlormethan (3:1) eine gelbe Zone mit (*E*)-**21 d** [$R_f = 0.6$ in Petrolether/Dichlormethan (3:1), 218 mg (58%) gelbe Kristalle, Schmp. 107 °C aus Petrolether bei -78 °C]. -1H-NMR [$C_6D_6/CS_2(1:1)$]: $\delta = 6.29$ (1 H, s, 2-H), 4.46 (2H, q, OCH₂), 2.51 (3H, s, NCH₃), 2.67 und 2.62 (je 2H, je ,,t", NCH₂ und 4-H₂ von Ring), 1.26 (4H, m, 5- und 6-H₂ von Ring), 1.24 (3H, t, CH₃ von Et). -13C-NMR [$C_6D_6/CS_2(1:1)$]: $\delta = 262.7$ (W = C); 204.1 und 200.7 [1:4, $^1J(^{183}W^{-13}C) = 127.4$ Hz, W(CO)₃]; 160.0 (C-3); 119.9 (C-2); 76.5 (OCH₂); 41.1 (NCH₃); 52.5, 31.1, 22.5, 19.3 (je CH₂ von Ring); 15.8 (CH₃ von Et). - IR (Hexan): \tilde{v} (%) = 2056.1 cm⁻¹ (14), 1923.0 (100) [v(C=O)]; (KBr): $\tilde{v} = 1645$ cm⁻¹ [v(C=C)]. - MS (70 eV): m/z (%) = 491 (3) [M[⊕]], 463 (3), 435 (2), 407 (3), 379 (3), 351 (0.1), 167 (22) [Ligand[⊕]], 122 (100) [167 - OEt], 138 (90) [167 - Et].

C₁₅H₁₇NO₆W (491.2) Ber. C 36.68 H 3.49 N 2.85 Gef. C 36.46 H 3.46 N 2.88

c) Insertionen von 4 und 2 mit $POCl_3/Et_3N$

Pentacarbonyl (2E)-1-(dimethylamino)-3-ethoxybutenyliden]wolfram [(E)-22a], Pentacarbonyl[(2Z)-1-(dimethylamino)-3ethoxybutenyliden]wolfram [(Z)-22a], Pentacarbonyl/(2E)-3-(dimethylamino)-1-ethoxybutenyliden | wolfram [(E)-23a]: Zu 396 mg (1.00 mmol) 4b in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 606 mg (6.00 mmol) Et₃N, 87 mg (1.00 mmol) N,N-Dimethylacetamid und 153 mg (1.00 mmol) POCl₃ in 4 ml Ether. Die Reaktionsmischung färbt sich dunkel, es tritt eine leichte Erwärmung ein, wobei sich ein Niederschlag abscheidet. Nach 24 h bei 20°C wird die Ether-Phase abgetrennt und der Rückstand zweimal mit je 2 ml Ether/ Petrolether (4:1) gewaschen. Die organischen Phasen werden eingedampft (15 Torr, 20°C), in wenig Petrolether/Ether (1:1) aufgenommen und auf -15°C gekühlt. Man erhält 263 mg (57%) eines gelben Kristallgemisches aus (E)-22 a: (E)-23 a = 5:1 $\lceil R_f = 0.6$ in Petrolether/Dichlormethan (3:1), Schmp. 64°C]. Die Mutterlauge wird an Kieselgel mit Petrolether/Dichlormethan (3:1) chromatographiert (Säule 30×1 cm). Man eluiert eine gelbe Zone mit nicht umgeseztem 4b, anschließend eine ebenfalls gelbe Zone mit (E)-22a und (Z)-22a [insgesamt 15 mg (3%), (E):(Z) \approx 1:3].

(E)-22 a: ¹H-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 5.43$ (1 H, s, 2-H), 3.47 (2 H, q, OCH₂), 2.98 und 2.18 (je 3 H, je s, je NCH₃), 1.29 (3 H, s, 3-CH₃), 1.03 (3 H, t, CH₃ von Et). - ¹³C-NMR ([D₆]Aceton): $\delta = 247.9$ (W = C), 204.8 und 199.5 [1:4, ¹J(¹⁸³W-¹³C) = 127 Hz, W(CO)₅], 145.6 (C-3), 115.5 (C-2), 63.4 (3-OCH₂), 53.9 und 43.8 (je NCH₃), 18.0 und 14.8 (je CH₃).

(*E*)-**22** a/(E)-**23**a: IR (Hexan): \tilde{v} (%) = 2062 cm⁻¹ (8), 1966 (2), 1925 (100) [$v(C \equiv O)$]; (KBr): $\tilde{v} = 1630$ cm⁻¹ [v(C = C)]. – MS (70 eV): m/z (¹⁸⁴W) (%) = 465 (5) [M^{\oplus}], 437 (23), 409 (10), 381 (5), 353 (14), 325 (48), 141 (24) [Ligand^{\oplus}], 113 (10) [141 – CO], 97 (44) [141 – NMe₂], 96 (100) [141 – OEt].

$$\begin{array}{c} C_{13}H_{15}NO_6W \ (465.1) & \mbox{Ber. C} \ 33.57 \ H \ 3.25 \ N \ 3.01 \\ & \mbox{Gef. C} \ 33.29 \ H \ 2.64 \ N \ 3.71 \end{array}$$

(Z)-22a: ¹H-NMR [C₆D₆/CS₂ (4:1)]: $\delta = 5.48$ (1 H, s, 2-H), 3.37 (2 H, q, OCH₂), 3.14 und 2.61 (je 3 H, je s, je NCH₃), 1.46 (3 H, s, 3-CH₃), 0.89 (3 H, t, CH₃ von Et).

(E)-23 a: Spektroskopische Daten siehe unter der Formelnummer (E)-6i.

Pentacarbonyl[(2E)-1-(dimethylamino)-3-ethoxypentenyliden]wolfram [(E)-22b], Pentacarbonyl[(2Z)-1-(dimethylamino)-3ethoxypentenyliden]wolfram [(Z)-22b], Pentacarbonyl[(2E)-3-(dimethylamino)-1-ethoxybutenyliden]wolfram [(E)-23b]: Zu 396 mg (1.00 mmol) 4b in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 606 mg (6.00 mmol) Et₃N, 101 mg (1.00 mmol) N,N-Dimethylpropionamid und 153 mg (1.00 mmol) POCl₃ in 4 ml Ether. Die Reaktionsmischung färbt sich dunkel unter leichter Erwärmung, wobei sich ein Niederschlag abscheidet. Nach 24 h bei 20°C wird die Ether-Phase abgetrennt und der Rückstand zweimal mit je 2 ml Ether/Petrolether (4:1) gewaschen. Die organischen Phasen werden eingedampft (15 Torr, 20°C), in wenig Petrolether/Ether (1:1) aufgenommen und auf -15°C gekühlt. Man erhält 63 mg (13%) orange Kristalle von (E)-22b. Die Mutterlauge wird an Kieselgel mit Petrolether/Dichlormethan (3:1) chromatographiert (Säule 30 × 1 cm). Man eluiert eine gelbe Zone mit einem 4:1-Gemisch aus (Z)-22b und (E)-23b [$R_f = 0.44$ in Petrolether/Dichlormethan (4:1), 24 mg (5%)]. Eine weitere gelbe Fraktion ergibt (E)-22b [$R_f = 0.38$ in Petrolether/Dichlormethan (2:1), 48 mg (10%), Schmp. 50°C].

(E)-22 b: ¹H-NMR (CDCl₃): $\delta = 3.78$ (2H, m, diastereotope OCH₂), 3.78 und 3.24 (je 3H, je s, je NCH₃), 1.76 und 1.65 (je 3H, je q, je ⁵J = 1.3 Hz, 2- und 3-CH₃), 1.28 (3H, t, CH₃ von Et). – ¹³C-NMR (CDCl₃): $\delta = 258.9$ (W=C), 204.2 und 199.7 [1:4, ¹J(¹⁸³W-¹³C) = 127 Hz, W(CO)₅], 137.9 (C-3), 130.8 (C-2), 64.2 (3-OCH₂), 53.4 und 42.7 (je NCH₃), 15.6 und 13.0 (2:1, je CH₃). – IR (Hexan): \tilde{v} (%) = 2062 cm⁻¹ (10), 1967 (2), 1931 (100) [$v(C \equiv O)$]; (KBr): $\tilde{v} = 1661$ cm⁻¹ [v(C = C]]. – MS (70 eV): *m/z*(¹⁸⁴W) (%) = 479 (6) [M[⊕]], 451 (20), 423 (14), 395 (12), 367 (12), 339 (52), 155 (12) [Ligand[⊕]], 111 (24) [155 – NMe₂], 110 (36) [155 – OEt], 58 (100).

(E)-22 b und (E)-23 b: IR (Hexan): \tilde{v} (%) = 2064 cm⁻¹ (9), 1964 (2), 1927 Sch. (100) [$v(C \equiv O)$].

C₁₄H₁₇NO₆W (479.1) Ber. C 35.09 H 3.58 N 2.92 Gef. C 35.63 H 3.63 N 2.74

(Z)-22 b: ¹H-NMR [C₆D₆/CS₂ (4:1)]: $\delta = 3.75$ (2H, m, diastereotope OCH₂), 3.73 und 3.21 (je 3H, je s, je NCH₃), 1.87 und 1.70 (je 3H, je q, je ⁵J = 0.9 Hz, 2- und 3-CH₃), 1.19 (3H, t, CH₃ von Et).

(E)-23 b: ¹H-NMR (CDCl₃): $\delta = 6.48$ (1 H, s, 2-H), 4.59 (2 H, q, 1-OCH₂), 3.14 (6 H, br. s, 2 NCH₃), 2.78 (2 H, q, 3-CH₂), 1.45 (3 H, t, 4-CH₃), 1.14 (3 H, t, CH₃ von Et).

Pentacarbonyl[(2E)-1-(dimethylamino)-3-ethoxy-4-phenylbutenyliden]wolfram [(E)-22c], Pentacarbonyl[(2Z)-1-(dimethylamino)-3-ethoxy-4-phenylbutenyliden]wolfram [(Z)-22c], Pentacarbonyl-[(2E)-3-(dimethylamino)-1-ethoxy-4-phenylbutenyliden]wolfram[(E)-22c]: Zu 396 mg (1.00 mmol) 4b in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 707 mg (7.00 mmol) Et₃N, 180 mg (1.10 mmol) N,N-Dimethylphenylacetamid und 168 mg (1.10 mmol) POCl₃ in 4 ml Ether. Die Reaktionsmischung färbt sich dunkel unter leichter Erwärmung, wobei sich ein Niederschlag abscheidet. Nach 24 h bei 20°C wird die Ether-Phase abgetrennt und der Rückstand zweimal mit je 2 ml Ether/Petrolether (4:1) gewaschen. Die organischen Phasen werden eingedampft (15 Torr, 20°C), in wenig Petrolether/ Ether (1:1) aufgenommen und an Kieselgel mit Petrolether/Dichlormethan (3:1) chromatographiert (Säule 30 \times 1 cm). Man eluiert eine gelbe Zone mit nicht umgesetztem 4b, anschließend eine ebenfalls gelbe Zone mit einem 3:1-Gemisch aus (Z)-22c und (E)-**23c** $[R_f = 0.6$ in Petrolether/Dichlormethan (4:1), 47 mg (9%)]. Eine weitere gelbe Fraktion ergibt (E)-22 c $[R_f = 0.3 \text{ in Petrolether}/$ Dichlormethan (2:1), 122 mg (23%), Schmp. 130°C].

(E)-22 c: ¹H-NMR (CDCl₃): δ = 7.33 und 7.23 (2: 3, je m, C₆H₅), 3.90 (2H, m, diastereotope OCH₂), 3.95 und 3.46 (je 3H, je s, je NCH₃), 1.83 (3H, s, 3-CH₃), 1.29 (3H, t, CH₃ von Et). - ¹³C-NMR (CDCl₃): δ = 256.0 (W=C); 203.2 und 197.4 [1:4, ¹J(¹⁸³W-¹³C) = 127 Hz, W(CO)₅]; 139.3 (C-3); 133.5 und 132.4 (C-2 und *i*-C von C₆H₅); 128.6, 128.3, 127.0 (2:2:1, C-2 bis -6 von C₆H₅); 64.0 (3-OCH₂); 53.0 und 43.3 (je NCH₃); 16.0 und 15.3 (je CH₃). - IR (Hexan): (%) = 2062 cm⁻¹ (17), 1973 (14), 1935 (93), 1925 (100) $[v(C \equiv O)];$ (KBr): $\tilde{v} = 1626 \text{ cm}^{-1} [v(C = C)]. - \text{MS}$ (70 eV): m/z (¹⁸⁴W) (%) = 541 (1) [M[⊕]], 485 (2), 217 (7) [Ligand[⊕]], 172 (14) [217 - OEt], 97 (13), 77 (20), 51 (100).

(Z)-22c: ¹H-NMR (CDCl₃): $\delta = 7.40 - 7.10$ (5H, m, C₆H₅), 3.94 (2H, m, diastereotope OCH₂), 3.87 und 3.46 (je 3H, je s, je NCH₃), 2.12 (3H, s, 3-CH₃), 1.29 (3H, t, CH₃ von Et). $-^{13}$ C-NMR (CDCl₃): $\delta = 251.9$ (W=C); 203.8 und 198.7 [1:4, ¹J(¹⁸³W-¹³C) = 127.6 Hz, W(CO)₅]; 138.4 (C-3); 135.2 und 130.6 (C-2 und *i*-C von C₆H₅); 129.1, 128.5, 127.1 (2:2:1, C-2 bis -6 von C₆H₅); 62.8 (3-OCH₂); 57.8 und 43.4 (je NCH₃); 15.6 und 13.9 (3-CH₃ und CH₃ von Et).

(Z)-22c und (E)-23c: IR (Hexan): \tilde{v} (%) = 2060 cm⁻¹ (14), 1967 (9), 1933 (100), 1923 (92), 1915 (75) [$v(C \equiv O)$]; (KBr): $\tilde{v} =$ 1628 cm⁻¹ [v(C = C)].

(E)-23 c: ¹H-NMR (CDCl₃): $\delta = 7.40 - 7.10$ (5 H, m, C₆H₅), 6.64 (1 H, s, 2-H), 4.46 (2 H, q, 1-OCH₂), 4.22 (2 H, s, 3-CH₂), 3.10 (6 H, br. s, 2 NCH₃), 1.05 (3 H, t, CH₃ von Et). $-^{13}$ C-NMR (CDCl₃): $\delta = 271.0$ (W = C); 204.1 und 200.0 [1:4, W(CO)₅]; 158.2 (C-3); 135.4 (*i*-C von C₆H₅); 130.4, 128.7, 126.6 (2:2:1, C-2 bis -6 von C₆H₅); 122.2 (C-2); 77.2 (3-OCH₂); NCH₃ nicht beobachtet, da vermutlich sehr br.; 34.5 (3-CH₂); 14.8 (CH₃ von Et).

C ₁₉ H ₁₉ NO ₆ W (541.2)	Ber. C 42.17 H 3.54 N 2.59
(E)- 22c :	Gef. C 42.29 H 3.65 N 2.85
(Z)-22 c und (E) -23 c:	Gef. C 42.37 H 3.60 N 2.38

Pentacarbonyl[(2E)-1-(dimethylamino)-3-ethoxybutenyliden]chrom [(E)-22d], Pentacarbonyl[(2Z)-1-(dimethylamino)-3-ethoxybutenyliden/chrom [(Z)-22d]: Zu 264 mg (1.00 mmol) 4a in einem luftdicht verschraubbaren 5-ml-Glasgefäß tropft man bei 20°C unter Rühren eine Lösung von 404 mg (4.00 mmol) Et₃N, 174 mg (2.00 mmol) N,N-Dimethylacetamid und 307 mg (2.00 mmol) POCl₃ in 4 ml Ether. Nach 24 h bei 20°C wird eingedampft (15 Torr, 20°C), in wenig Dichlormethan aufgenommen und die Lösung an Kieselgel chromatographiert (Säule 20 × 2 cm). Man eluiert mit Petrolether/ Dichlormethan (3:1) eine gelbe Zone mit (Z)-22d [$R_f = 0.74$ in Petrolether/Dichlormethan (3:1), 99 mg (30%) gelbe Kristalle, Schmp. 37°C aus Petrolether bei -78°C], anschließend eine weitere gelbe Zone mit (E)-22d [$R_f = 0.52$ in Petrolether/Dichlormethan (3:1), 136 mg (41%) gelbe Kristalle, Schmp. 61.5°C].

(Z)-22d: ¹H-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 5.59$ (1 H, s, 2-H), 3.55 (2 H, q, OCH₂), 3.44 und 2.93 (je 3 H, je s, je NCH₃), 1.68 (3 H, s, 3-CH₃), 1.03 (3 H, t, CH₃ von Et). $-^{13}$ C-NMR [C₆D₆/CS₂ (1:1)]: $\delta =$ 263.6 (Cr = C), 223.8 und 218.7 [1:4, Cr(CO)₅], 136.7 (C-3), 119.3 (C-2), 63.1 (3-OCH₂), 50.1 und 44.9 (je NCH₃), 16.9 und 15.7 (je CH₃). -IR (Hexan): \tilde{v} (%) = 2052.3 cm⁻¹ (10), 1928.8 (100) [v(C=O)]; 1637.6 [v(C=C)].

(E)-22 d: ¹H-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 5.58$ (1H, s, 2-H), 3.60 (2H, q, OCH₂), 3.42 und 2.80 (je 3 H, je s, je NCH₃), 1.35 (3H, s, 3-CH₃), 1.17 (3 H, t, CH₃ von Et). - ¹³C-NMR [C₆D₆/CS₂ (1:1)]: $\delta = 273.3$ (Cr = C), 223.7 und 218.2 [1:4, Cr(CO)₅], 143.5 (C-3), 113.9 (C-2), 63.0 (3-OCH₂), 50.4 und 44.2 (je NCH₃), 17.7 und 14.7 (je CH₃). - IR (Hexan): \tilde{v} (%) = 2054.2 cm⁻¹ (10), 1928.8 (100) [v(C=O)]; 1631.8 [v(C=C)]. - MS (70 eV): m/z (%) = 333 (0.7) [M[®]], 305 (5), 277 (1), 249 (2), 221 (10), 193 (27) [M[®] - 5 CO], 164 (22), 149 (50) [M[®] - 5 CO - NMe₂], 141 (18) [Ligand[®]], 52 (100).

 $\begin{array}{rl} C_{13}H_{15}CrNO_6 \ (333.3) & \mbox{Ber. C} \ 46.85 \ H \ 4.54 \ N \ 4.20 \\ (Z)\mbox{-}22d: & \mbox{Gef. C} \ 46.67 \ H \ 4.45 \ N \ 4.19 \\ (E)\mbox{-}22d: & \mbox{Gef. C} \ 46.54 \ H \ 4.40 \ N \ 4.16 \end{array}$

CAS-Registry-Nummern

2a: 127-19-5 / **2b**: 758-96-3 / **2c**: 18925-69-4 / **4a**: 25879-46-3 / **4b**: 38669-69-1 / **5a**: 68-12-2 / **5b**: 93-61-8 / **5c**: 611-74-5 / **5d**: 24331-71-3 / **5e**: 21678-37-5 / **5f**: 26153-90-2 / (E)-**6a**: 123624-08-8 / (E)-**6b**: 123624-09-9 / (E)-**6c**: 123673-20-1 / (E)-**6e**: 123624-10-2 / (E)-

6f: 123624-11-3 / (E)-6g: 123624-12-4 / (E)-6h: 123624-14-6 / (E)-6i: 123624-16-8 / 11a: 30868-74-7 / 11b: 41948-89-4 / (E)-13a: 123624-15-7 / (E)-13g: 123624-13-5 / 15a: 123624-24-8 / (E)-17: 123624-17-9 / (E)-18: 123624-18-0 / 20a: 940-85-2 / 20b: 75256-22-3 / 20c: 33367-53-2 / (E)-21a: 123624-19-1 / (E)-21b: 123624-20-4 / (E)-21c: 123624-21-5 / (E)-21d: 123624-22-6 / (E)-22a: 123624-25-9 / (Z)-22a: 123673-21-2 / (E)-22b: 123624-26-0 / (Z)-22b: 123624-26-0 / (Z)-22d: 123624-26-0 / (Z)-23a: 123624-26-0 / (E)-23a: 123624-26-0 / (E)-23a: 123624-26-1 / (E)-23a: 123624-27-1 / (E)-23c: 123624-29-3

- ¹⁾ Diese Arbeit wurde vorgetragen am 28.9.1988 anläßlich des Workshops, Transition Metal Carbene Complexes" in Wildbad Kreuth. – 43. Mitteilung: R. Aumann, H. Heinen, C. Krüger, P. Betz, Chem. Ber. 123 (1990) 605; voranstehend.
 ²⁹ W. D. Wulff, S. R. Gilbertson, J. Am. Chem. Soc. 107 (1985) 503.
- ³⁾ E. O. Fischer, H. J. Kalder, J. Organomet. Chem. 131 (1977) 57.
- ⁴⁾ L. Lattuada, E. Licandro, A. Papagni, S. Maiorana, A. C. Villa, C. Guastini, J. Chem. Soc., Chem. Commun. **1988**, 1092.
- ⁵⁾ R. Aumann, H. Heinen, Chem. Ber. 120 (1987) 537
- ⁶⁾ J. W. Wilson, E. O. Fischer, J. Organomet. Chem. 57 (1973) C63. ⁷⁾ K. H. Dötz, B. Fuggen-Köster, D. Neugebauer, J. Organomet.
- Chem. 182 (1979) 489
- ⁸⁾ K. H. Dötz, J. Pruskil, Chem. Ber. 111 (1978) 2059.
- ⁹⁾ K. H. Dötz, J. Pruskil, J. Organomet. Chem. 132 (1977) 115.
 ¹⁰⁾ K. H. Dötz, D. Neugebauer, Angew. Chem. 90 (1978) 898; Angew. Chem. Int. Ed. Engl. 17 (1978) 851.

- ¹¹⁾ R. Aumann, P. Hinterding, Chem. Ber. 122 (1989) 365.
- ¹²⁾ 41. Mitteilung: R. Aumann, J. Schröder, Chem. Ber. 123 (1990), im Druck.
- ¹³⁾ L. S. Hegedus, M. A. McGuire, L. M. Schultze, Chen Yijan, J. Am. Chem. Soc. 106 (1984) 2680.
- 14) R. Aumann, E. O. Fischer, Angew. Chem. 79 (1967) 900; Angew. Chem. Int. Ed. Engl. 6 (1967) 897; Chem. Ber. 101 (1968) 954. ¹⁵⁾ H. Wiedemann, Dissertation, Univ. Münster, 1986.
- ¹⁶⁾ C. P. Casey, R. A. Boggs, R. L. Anderson, J. Am. Chem. Soc. 94 (1972) 8947.
- ¹⁷⁾ D. W. Macomber, M. Liang, P. Madhukar, A. G. Verma, J. Organomet. Chem. **361** (1989) 187.
- ¹⁸⁾ M. Rudler-Chauvin, H. Rudler, J. Organomet. Chem. 212 (1981) 203.
- ¹⁹⁾ H. G. Raubenheimer in Adv. in Metal Carbene Chemistry (U. Schubert, Hrsg.), S. 145, Kluwer Academic Publishers, Dordrecht 1989; H. G. Raubenheimer, G. J. Kruger, C. F. Marais, J. T. Kruger, C. F. Marais, J. 255 (1989) 325. T. Z. Hattingh, L. Linford, J. Organomet. Chem. 355 (1988) 337; G. J. Kruger, J. Coetzer, H. G. Raubenheimer, S. Lotz, J. Organomet. Chem. 142 (1977) 249.
- ²⁰⁾ D. W. Macomber, P. Madhukar, R. D. Rogers, Organometallics 8 (1989) 1275
- ²¹⁾ H. Bredereck, F. Effenberger, G. Simchen, Chem. Ber. 96 (1963) 1350.
- ²²⁾ G. Pfifferi, P. Cousonni, E. Testa, Ann. Chim. (Rome) 58 (1968) 1283
- ²³⁾ G. Huttner, S. Lange, Chem. Ber. 103 (1970) 3149.
- ²⁴⁾ A. Wienand, H.-U. Reißig, H. Fischer, J. Hofmann, Chem. Ber. 122 (1989) 1589.

[274/89]